Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Ranking Using Quantum Probability (1108.5491v1)

Published 28 Aug 2011 in cs.IR, cs.ET, cs.LG, and physics.data-an

Abstract: The paper shows that ranking information units by quantum probability differs from ranking them by classical probability provided the same data used for parameter estimation. As probability of detection (also known as recall or power) and probability of false alarm (also known as fallout or size) measure the quality of ranking, we point out and show that ranking by quantum probability yields higher probability of detection than ranking by classical probability provided a given probability of false alarm and the same parameter estimation data. As quantum probability provided more effective detectors than classical probability within other domains that data management, we conjecture that, the system that can implement subspace-based detectors shall be more effective than a system which implements a set-based detectors, the effectiveness being calculated as expected recall estimated over the probability of detection and expected fallout estimated over the probability of false alarm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Massimo Melucci (14 papers)

Summary

We haven't generated a summary for this paper yet.