Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from Complex Systems: On the Roles of Entropy and Fisher Information in Pairwise Isotropic Gaussian Markov Random Fields (1108.4973v12)

Published 25 Aug 2011 in cs.IT, cs.AI, cs.CV, math.IT, and stat.CO

Abstract: Markov Random Field models are powerful tools for the study of complex systems. However, little is known about how the interactions between the elements of such systems are encoded, especially from an information-theoretic perspective. In this paper, our goal is to enlight the connection between Fisher information, Shannon entropy, information geometry and the behavior of complex systems modeled by isotropic pairwise Gaussian Markov random fields. We propose analytical expressions to compute local and global versions of these measures using Besag's pseudo-likelihood function, characterizing the system's behavior through its \emph{Fisher curve}, a parametric trajectory accross the information space that provides a geometric representation for the study of complex systems. Computational experiments show how the proposed tools can be useful in extrating relevant information from complex patterns. The obtained results quantify and support our main conclusion, which is: in terms of information, moving towards higher entropy states (A --> B) is different from moving towards lower entropy states (B --> A), since the \emph{Fisher curves} are not the same given a natural orientation (the direction of time).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (13)

Summary

We haven't generated a summary for this paper yet.