Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

On sub-determinants and the diameter of polyhedra (1108.4272v2)

Published 22 Aug 2011 in math.CO and cs.CG

Abstract: We derive a new upper bound on the diameter of a polyhedron P = {x \in Rn : Ax <= b}, where A \in Z{m\timesn}. The bound is polynomial in n and the largest absolute value of a sub-determinant of A, denoted by \Delta. More precisely, we show that the diameter of P is bounded by O(\Delta2 n4 log n\Delta). If P is bounded, then we show that the diameter of P is at most O(\Delta2 n3.5 log n\Delta). For the special case in which A is a totally unimodular matrix, the bounds are O(n4 log n) and O(n3.5 log n) respectively. This improves over the previous best bound of O(m16 n3 (log mn)3) due to Dyer and Frieze.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.