Papers
Topics
Authors
Recent
2000 character limit reached

Gaussian Channel with Noisy Feedback and Peak Energy Constraint (1108.3571v1)

Published 17 Aug 2011 in cs.IT and math.IT

Abstract: Optimal coding over the additive white Gaussian noise channel under the peak energy constraint is studied when there is noisy feedback over an orthogonal additive white Gaussian noise channel. As shown by Pinsker, under the peak energy constraint, the best error exponent for communicating an M-ary message, M >= 3, with noise-free feedback is strictly larger than the one without feedback. This paper extends Pinsker's result and shows that if the noise power in the feedback link is sufficiently small, the best error exponent for conmmunicating an M-ary message can be strictly larger than the one without feedback. The proof involves two feedback coding schemes. One is motivated by a two-stage noisy feedback coding scheme of Burnashev and Yamamoto for binary symmetric channels, while the other is a linear noisy feedback coding scheme that extends Pinsker's noise-free feedback coding scheme. When the feedback noise power $\alpha$ is sufficiently small, the linear coding scheme outperforms the two-stage (nonlinear) coding scheme, and is asymptotically optimal as $\alpha$ tends to zero. By contrast, when $\alpha$ is relatively larger, the two-stage coding scheme performs better.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.