Papers
Topics
Authors
Recent
2000 character limit reached

The Statistical methods of Pixel-Based Image Fusion Techniques (1108.3250v1)

Published 12 Aug 2011 in cs.CV

Abstract: There are many image fusion methods that can be used to produce high-resolution mutlispectral images from a high-resolution panchromatic (PAN) image and low-resolution multispectral (MS) of remote sensed images. This paper attempts to undertake the study of image fusion techniques with different Statistical techniques for image fusion as Local Mean Matching (LMM), Local Mean and Variance Matching (LMVM), Regression variable substitution (RVS), Local Correlation Modeling (LCM) and they are compared with one another so as to choose the best technique, that can be applied on multi-resolution satellite images. This paper also devotes to concentrate on the analytical techniques for evaluating the quality of image fusion (F) by using various methods including Standard Deviation (SD), Entropy(En), Correlation Coefficient (CC), Signal-to Noise Ratio (SNR), Normalization Root Mean Square Error (NRMSE) and Deviation Index (DI) to estimate the quality and degree of information improvement of a fused image quantitatively.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.