Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Structured Learning of Two-Level Dynamic Rankings (1108.2754v1)

Published 13 Aug 2011 in cs.IR

Abstract: For ambiguous queries, conventional retrieval systems are bound by two conflicting goals. On the one hand, they should diversify and strive to present results for as many query intents as possible. On the other hand, they should provide depth for each intent by displaying more than a single result. Since both diversity and depth cannot be achieved simultaneously in the conventional static retrieval model, we propose a new dynamic ranking approach. Dynamic ranking models allow users to adapt the ranking through interaction, thus overcoming the constraints of presenting a one-size-fits-all static ranking. In particular, we propose a new two-level dynamic ranking model for presenting search results to the user. In this model, a user's interactions with the first-level ranking are used to infer this user's intent, so that second-level rankings can be inserted to provide more results relevant for this intent. Unlike for previous dynamic ranking models, we provide an algorithm to efficiently compute dynamic rankings with provable approximation guarantees for a large family of performance measures. We also propose the first principled algorithm for learning dynamic ranking functions from training data. In addition to the theoretical results, we provide empirical evidence demonstrating the gains in retrieval quality that our method achieves over conventional approaches.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.