Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An Efficient Architecture for Information Retrieval in P2P Context Using Hypergraph (1108.1378v1)

Published 5 Aug 2011 in cs.DB and cs.PF

Abstract: Peer-to-peer (P2P) Data-sharing systems now generate a significant portion of Internet traffic. P2P systems have emerged as an accepted way to share enormous volumes of data. Needs for widely distributed information systems supporting virtual organizations have given rise to a new category of P2P systems called schema-based. In such systems each peer is a database management system in itself, ex-posing its own schema. In such a setting, the main objective is the efficient search across peer databases by processing each incoming query without overly consuming bandwidth. The usability of these systems depends on successful techniques to find and retrieve data; however, efficient and effective routing of content-based queries is an emerging problem in P2P networks. This work was attended as an attempt to motivate the use of mining algorithms in the P2P context may improve the significantly the efficiency of such methods. Our proposed method based respectively on combination of clustering with hypergraphs. We use ECCLAT to build approximate clustering and discovering meaningful clusters with slight overlapping. We use an algorithm MTMINER to extract all minimal transversals of a hypergraph (clusters) for query routing. The set of clusters improves the robustness in queries routing mechanism and scalability in P2P Network. We compare the performance of our method with the baseline one considering the queries routing problem. Our experimental results prove that our proposed methods generate impressive levels of performance and scalability with with respect to important criteria such as response time, precision and recall.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.