Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Berry's conjectures about the stable order in PCF (1108.0556v3)

Published 2 Aug 2011 in cs.LO

Abstract: PCF is a sequential simply typed lambda calculus language. There is a unique order-extensional fully abstract cpo model of PCF, built up from equivalence classes of terms. In 1979, G\'erard Berry defined the stable order in this model and proved that the extensional and the stable order together form a bicpo. He made the following two conjectures: 1) "Extensional and stable order form not only a bicpo, but a bidomain." We refute this conjecture by showing that the stable order is not bounded complete, already for finitary PCF of second-order types. 2) "The stable order of the model has the syntactic order as its image: If a is less than b in the stable order of the model, for finite a and b, then there are normal form terms A and B with the semantics a, resp. b, such that A is less than B in the syntactic order." We give counter-examples to this conjecture, again in finitary PCF of second-order types, and also refute an improved conjecture: There seems to be no simple syntactic characterization of the stable order. But we show that Berry's conjecture is true for unary PCF. For the preliminaries, we explain the basic fully abstract semantics of PCF in the general setting of (not-necessarily complete) partial order models (f-models.) And we restrict the syntax to "game terms", with a graphical representation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)