Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Adaptive Drift Analysis (1108.0295v2)

Published 1 Aug 2011 in cs.DS

Abstract: We show that, for any c>0, the (1+1) evolutionary algorithm using an arbitrary mutation rate p_n = c/n finds the optimum of a linear objective function over bit strings of length n in expected time Theta(n log n). Previously, this was only known for c at most 1. Since previous work also shows that universal drift functions cannot exist for c larger than a certain constant, we instead define drift functions which depend crucially on the relevant objective functions (and also on c itself). Using these carefully-constructed drift functions, we prove that the expected optimisation time is Theta(n log n). By giving an alternative proof of the multiplicative drift theorem, we also show that our optimisation-time bound holds with high probability.

Citations (114)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.