Adaptive Drift Analysis (1108.0295v2)
Abstract: We show that, for any c>0, the (1+1) evolutionary algorithm using an arbitrary mutation rate p_n = c/n finds the optimum of a linear objective function over bit strings of length n in expected time Theta(n log n). Previously, this was only known for c at most 1. Since previous work also shows that universal drift functions cannot exist for c larger than a certain constant, we instead define drift functions which depend crucially on the relevant objective functions (and also on c itself). Using these carefully-constructed drift functions, we prove that the expected optimisation time is Theta(n log n). By giving an alternative proof of the multiplicative drift theorem, we also show that our optimisation-time bound holds with high probability.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.