Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explicit Bounds for Entropy Concentration under Linear Constraints (1107.6004v5)

Published 29 Jul 2011 in cs.IT, math.IT, and physics.data-an

Abstract: Consider the set of all sequences of $n$ outcomes, each taking one of $m$ values, that satisfy a number of linear constraints. If $m$ is fixed while $n$ increases, most sequences that satisfy the constraints result in frequency vectors whose entropy approaches that of the maximum entropy vector satisfying the constraints. This well-known "entropy concentration" phenomenon underlies the maximum entropy method. Existing proofs of the concentration phenomenon are based on limits or asymptotics and unrealistically assume that constraints hold precisely, supporting maximum entropy inference more in principle than in practice. We present, for the first time, non-asymptotic, explicit lower bounds on $n$ for a number of variants of the concentration result to hold to any prescribed accuracies, with the constraints holding up to any specified tolerance, taking into account the fact that allocations of discrete units can satisfy constraints only approximately. Again unlike earlier results, we measure concentration not by deviation from the maximum entropy value, but by the $\ell_1$ and $\ell_2$ distances from the maximum entropy-achieving frequency vector. One of our results holds independently of the alphabet size $m$ and is based on a novel proof technique using the multi-dimensional Berry-Esseen theorem. We illustrate and compare our results using various detailed examples.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.