Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Efficient Instance Retrieval of Subgoals for Subsumptive Tabled Evaluation of Logic Programs (1107.5556v1)

Published 27 Jul 2011 in cs.PL

Abstract: Tabled evaluation is an implementation technique that solves some problems of traditional Prolog systems in dealing with recursion and redundant computations. Most tabling engines determine if a tabled subgoal will produce or consume answers by using variant checks. A more refined method, named call subsumption, considers that a subgoal A will consume from a subgoal B if A is subsumed by (an instance of) B, thus allowing greater answer reuse. We recently developed an extension, called Retroactive Call Subsumption, that improves upon call subsumption by supporting bidirectional sharing of answers between subsumed/subsuming subgoals. In this paper, we present both an algorithm and an extension to the table space data structures to efficiently implement instance retrieval of subgoals for subsumptive tabled evaluation of logic programs. Experiments results using the YapTab tabling system show that our implementation performs quite well on some complex benchmarks and is robust enough to handle a large number of subgoals without performance degradation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.