Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Axioms for Rational Reinforcement Learning (1107.5520v1)

Published 27 Jul 2011 in cs.LG

Abstract: We provide a formal, simple and intuitive theory of rational decision making including sequential decisions that affect the environment. The theory has a geometric flavor, which makes the arguments easy to visualize and understand. Our theory is for complete decision makers, which means that they have a complete set of preferences. Our main result shows that a complete rational decision maker implicitly has a probabilistic model of the environment. We have a countable version of this result that brings light on the issue of countable vs finite additivity by showing how it depends on the geometry of the space which we have preferences over. This is achieved through fruitfully connecting rationality with the Hahn-Banach Theorem. The theory presented here can be viewed as a formalization and extension of the betting odds approach to probability of Ramsey and De Finetti.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.