Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deterministic Construction of an Approximate M-Ellipsoid and its Application to Derandomizing Lattice Algorithms (1107.5478v1)

Published 27 Jul 2011 in cs.CC and math.FA

Abstract: We give a deterministic O(log n)n algorithm for the {\em Shortest Vector Problem (SVP)} of a lattice under {\em any} norm, improving on the previous best deterministic bound of nO(n) for general norms and nearly matching the bound of 2O(n) for the standard Euclidean norm established by Micciancio and Voulgaris (STOC 2010). Our algorithm can be viewed as a derandomization of the AKS randomized sieve algorithm, which can be used to solve SVP for any norm in 2O(n) time with high probability. We use the technique of covering a convex body by ellipsoids, as introduced for lattice problems in (Dadush et al., FOCS 2011). Our main contribution is a deterministic approximation of an M-ellipsoid of any convex body. We achieve this via a convex programming formulation of the optimal ellipsoid with the objective function being an n-dimensional integral that we show can be approximated deterministically, a technique that appears to be of independent interest.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.