Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Matroidal Degree-Bounded Minimum Spanning Trees (1107.5329v1)

Published 26 Jul 2011 in cs.DS and cs.DM

Abstract: We consider the minimum spanning tree (MST) problem under the restriction that for every vertex v, the edges of the tree that are adjacent to v satisfy a given family of constraints. A famous example thereof is the classical degree-constrained MST problem, where for every vertex v, a simple upper bound on the degree is imposed. Iterative rounding/relaxation algorithms became the tool of choice for degree-bounded network design problems. A cornerstone for this development was the work of Singh and Lau, who showed for the degree-bounded MST problem how to find a spanning tree violating each degree bound by at most one unit and with cost at most the cost of an optimal solution that respects the degree bounds. However, current iterative rounding approaches face several limits when dealing with more general degree constraints. In particular, when several constraints are imposed on the edges adjacent to a vertex v, as for example when a partition of the edges adjacent to v is given and only a fixed number of elements can be chosen out of each set of the partition, current approaches might violate each of the constraints by a constant, instead of violating all constraints together by at most a constant number of edges. Furthermore, it is also not clear how previous iterative rounding approaches can be used for degree constraints where some edges are in a super-constant number of constraints. We extend iterative rounding/relaxation approaches both on a conceptual level as well as aspects involving their analysis to address these limitations. This leads to an efficient algorithm for the degree-constrained MST problem where for every vertex v, the edges adjacent to v have to be independent in a given matroid. The algorithm returns a spanning tree T of cost at most OPT, such that for every vertex v, it suffices to remove at most 8 edges from T to satisfy the matroidal degree constraint at v.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)