Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Matroidal Degree-Bounded Minimum Spanning Trees (1107.5329v1)

Published 26 Jul 2011 in cs.DS and cs.DM

Abstract: We consider the minimum spanning tree (MST) problem under the restriction that for every vertex v, the edges of the tree that are adjacent to v satisfy a given family of constraints. A famous example thereof is the classical degree-constrained MST problem, where for every vertex v, a simple upper bound on the degree is imposed. Iterative rounding/relaxation algorithms became the tool of choice for degree-bounded network design problems. A cornerstone for this development was the work of Singh and Lau, who showed for the degree-bounded MST problem how to find a spanning tree violating each degree bound by at most one unit and with cost at most the cost of an optimal solution that respects the degree bounds. However, current iterative rounding approaches face several limits when dealing with more general degree constraints. In particular, when several constraints are imposed on the edges adjacent to a vertex v, as for example when a partition of the edges adjacent to v is given and only a fixed number of elements can be chosen out of each set of the partition, current approaches might violate each of the constraints by a constant, instead of violating all constraints together by at most a constant number of edges. Furthermore, it is also not clear how previous iterative rounding approaches can be used for degree constraints where some edges are in a super-constant number of constraints. We extend iterative rounding/relaxation approaches both on a conceptual level as well as aspects involving their analysis to address these limitations. This leads to an efficient algorithm for the degree-constrained MST problem where for every vertex v, the edges adjacent to v have to be independent in a given matroid. The algorithm returns a spanning tree T of cost at most OPT, such that for every vertex v, it suffices to remove at most 8 edges from T to satisfy the matroidal degree constraint at v.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.