Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fluid Flow Complexity in Fracture Networks: Analysis with Graph Theory and LBM (1107.4918v2)

Published 25 Jul 2011 in cs.CE

Abstract: Through this research, embedded synthetic fracture networks in rock masses are studied. To analysis the fluid flow complexity in fracture networks with respect to the variation of connectivity patterns, two different approaches are employed, namely, the Lattice Boltzmann method and graph theory. The Lattice Boltzmann method is used to show the sensitivity of the permeability and fluid velocity distribution to synthetic fracture networks' connectivity patterns. Furthermore, the fracture networks are mapped into the graphs, and the characteristics of these graphs are compared to the main spatial fracture networks. Among different characteristics of networks, we distinguish the modularity of networks and sub-graphs distributions. We map the flow regimes into the proper regions of the network's modularity space. Also, for each type of fluid regime, corresponding motifs shapes are scaled. Implemented power law distributions of fracture length in spatial fracture networks yielded the same node's degree distribution in transformed networks. Two general spatial networks are considered: random networks and networks with "hubness" properties mimicking a spatial damage zone (both with power law distribution of fracture length). In the first case, the fractures are embedded in uniformly distributed fracture sets; the second case covers spatial fracture zones. We prove numerically that the abnormal change (transition) in permeability is controlled by the hub growth rate. Also, comparing LBM results with the characteristic mean length of transformed networks' links shows a reverse relationship between the aforementioned parameters. In addition, the abnormalities in advection through nodes are presented.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.