Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bounds for graph regularity and removal lemmas (1107.4829v1)

Published 25 Jul 2011 in math.CO and cs.DM

Abstract: We show, for any positive integer k, that there exists a graph in which any equitable partition of its vertices into k parts has at least ck2/\log* k pairs of parts which are not \epsilon-regular, where c,\epsilon>0 are absolute constants. This bound is tight up to the constant c and addresses a question of Gowers on the number of irregular pairs in Szemer\'edi's regularity lemma. In order to gain some control over irregular pairs, another regularity lemma, known as the strong regularity lemma, was developed by Alon, Fischer, Krivelevich, and Szegedy. For this lemma, we prove a lower bound of wowzer-type, which is one level higher in the Ackermann hierarchy than the tower function, on the number of parts in the strong regularity lemma, essentially matching the upper bound. On the other hand, for the induced graph removal lemma, the standard application of the strong regularity lemma, we find a different proof which yields a tower-type bound. We also discuss bounds on several related regularity lemmas, including the weak regularity lemma of Frieze and Kannan and the recently established regular approximation theorem. In particular, we show that a weak partition with approximation parameter \epsilon may require as many as 2{\Omega(\epsilon{-2})} parts. This is tight up to the implied constant and solves a problem studied by Lov\'asz and Szegedy.

Citations (101)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)