Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Semantic Relatedness Measure Based on Combined Encyclopedic, Ontological and Collocational Knowledge (1107.4723v2)

Published 24 Jul 2011 in cs.CL

Abstract: We describe a new semantic relatedness measure combining the Wikipedia-based Explicit Semantic Analysis measure, the WordNet path measure and the mixed collocation index. Our measure achieves the currently highest results on the WS-353 test: a Spearman rho coefficient of 0.79 (vs. 0.75 in (Gabrilovich and Markovitch, 2007)) when applying the measure directly, and a value of 0.87 (vs. 0.78 in (Agirre et al., 2009)) when using the prediction of a polynomial SVM classifier trained on our measure. In the appendix we discuss the adaptation of ESA to 2011 Wikipedia data, as well as various unsuccessful attempts to enhance ESA by filtering at word, sentence, and section level.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.