Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Annotating Simplices with a Homology Basis and Its Applications (1107.3793v3)

Published 19 Jul 2011 in cs.CG and cs.DS

Abstract: Let $K$ be a simplicial complex and $g$ the rank of its $p$-th homology group $H_p(K)$ defined with $Z_2$ coefficients. We show that we can compute a basis $H$ of $H_p(K)$ and annotate each $p$-simplex of $K$ with a binary vector of length $g$ with the following property: the annotations, summed over all $p$-simplices in any $p$-cycle $z$, provide the coordinate vector of the homology class $[z]$ in the basis $H$. The basis and the annotations for all simplices can be computed in $O(n{\omega})$ time, where $n$ is the size of $K$ and $\omega<2.376$ is a quantity so that two $n\times n$ matrices can be multiplied in $O(n{\omega})$ time. The pre-computation of annotations permits answering queries about the independence or the triviality of $p$-cycles efficiently. Using annotations of edges in 2-complexes, we derive better algorithms for computing optimal basis and optimal homologous cycles in 1-dimensional homology. Specifically, for computing an optimal basis of $H_1(K)$, we improve the time complexity known for the problem from $O(n4)$ to $O(n{\omega}+n2g{\omega-1})$. Here $n$ denotes the size of the 2-skeleton of $K$ and $g$ the rank of $H_1(K)$. Computing an optimal cycle homologous to a given 1-cycle is NP-hard even for surfaces and an algorithm taking $2{O(g)}n\log n$ time is known for surfaces. We extend this algorithm to work with arbitrary 2-complexes in $O(n{\omega})+2{O(g)}n2\log n$ time using annotations.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.