Papers
Topics
Authors
Recent
2000 character limit reached

On Polynomial Kernels for Structural Parameterizations of Odd Cycle Transversal (1107.3658v1)

Published 19 Jul 2011 in cs.DS

Abstract: The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite (i.e., 2-colorable) by deleting at most l vertices. We study structural parameterizations of OCT with respect to their polynomial kernelizability, i.e., whether instances can be efficiently reduced to a size polynomial in the chosen parameter. It is a major open problem in parameterized complexity whether Odd Cycle Transversal admits a polynomial kernel when parameterized by l. On the positive side, we show a polynomial kernel for OCT when parameterized by the vertex deletion distance to the class of bipartite graphs of treewidth at most w (for any constant w); this generalizes the parameter feedback vertex set number (i.e., the distance to a forest). Complementing this, we exclude polynomial kernels for OCT parameterized by the distance to outerplanar graphs, conditioned on the assumption that NP \not \subseteq coNP/poly. Thus the bipartiteness requirement for the treewidth w graphs is necessary. Further lower bounds are given for parameterization by distance from cluster and co-cluster graphs respectively, as well as for Weighted OCT parameterized by the vertex cover number (i.e., the distance from an independent set).

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.