Papers
Topics
Authors
Recent
Search
2000 character limit reached

Upper bounds for centerlines

Published 18 Jul 2011 in cs.CG and math.CO | (1107.3421v3)

Abstract: In 2008, Bukh, Matousek, and Nivasch conjectured that for every n-point set S in Rd and every k, 0 <= k <= d-1, there exists a k-flat f in Rd (a "centerflat") that lies at "depth" (k+1) n / (k+d+1) - O(1) in S, in the sense that every halfspace that contains f contains at least that many points of S. This claim is true and tight for k=0 (this is Rado's centerpoint theorem), as well as for k = d-1 (trivial). Bukh et al. showed the existence of a (d-2)-flat at depth (d-1) n / (2d-1) - O(1) (the case k = d-2). In this paper we concentrate on the case k=1 (the case of "centerlines"), in which the conjectured value for the leading constant is 2/(d+2). We prove that 2/(d+2) is an upper bound for the leading constant. Specifically, we show that for every fixed d and every n there exists an n-point set in Rd for which no line in Rd lies at depth larger than 2n/(d+2) + o(n). This point set is the "stretched grid"---a set which has been previously used by Bukh et al. for other related purposes. Hence, in particular, the conjecture is now settled for R3.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.