Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Routing in Undirected Graphs with Constant Congestion (1107.2554v1)

Published 13 Jul 2011 in cs.DS

Abstract: Given an undirected graph G=(V,E), a collection (s_1,t_1),...,(s_k,t_k) of k source-sink pairs, and an integer c, the goal in the Edge Disjoint Paths with Congestion problem is to connect maximum possible number of the source-sink pairs by paths, so that the maximum load on any edge (called edge congestion) does not exceed c. We show an efficient randomized algorithm to route $\Omega(OPT/\poly\log k)$ source-sink pairs with congestion at most 14, where OPT is the maximum number of pairs that can be simultaneously routed on edge-disjoint paths. The best previous algorithm that routed $\Omega(OPT/\poly\log n)$ pairs required congestion $\poly(\log \log n)$, and for the setting where the maximum allowed congestion is bounded by a constant c, the best previous algorithms could only guarantee the routing of $OPT/n{O(1/c)}$ pairs.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)