Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Analysis and Improvement of Low Rank Representation for Subspace segmentation (1107.1561v1)

Published 8 Jul 2011 in cs.CV

Abstract: We analyze and improve low rank representation (LRR), the state-of-the-art algorithm for subspace segmentation of data. We prove that for the noiseless case, the optimization model of LRR has a unique solution, which is the shape interaction matrix (SIM) of the data matrix. So in essence LRR is equivalent to factorization methods. We also prove that the minimum value of the optimization model of LRR is equal to the rank of the data matrix. For the noisy case, we show that LRR can be approximated as a factorization method that combines noise removal by column sparse robust PCA. We further propose an improved version of LRR, called Robust Shape Interaction (RSI), which uses the corrected data as the dictionary instead of the noisy data. RSI is more robust than LRR when the corruption in data is heavy. Experiments on both synthetic and real data testify to the improved robustness of RSI.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.