Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian experimental design for the active nitridation of graphite by atomic nitrogen (1107.1445v1)

Published 7 Jul 2011 in physics.data-an, cs.IT, math.IT, and stat.AP

Abstract: The problem of optimal data collection to efficiently learn the model parameters of a graphite nitridation experiment is studied in the context of Bayesian analysis using both synthetic and real experimental data. The paper emphasizes that the optimal design can be obtained as a result of an information theoretic sensitivity analysis. Thus, the preferred design is where the statistical dependence between the model parameters and observables is the highest possible. In this paper, the statistical dependence between random variables is quantified by mutual information and estimated using a k-nearest neighbor based approximation. It is shown, that by monitoring the inference process via measures such as entropy or Kullback-Leibler divergence, one can determine when to stop the data collection process. The methodology is applied to select the most informative designs on both a simulated data set and on an experimental data set, previously published in the literature. It is also shown that the sequential Bayesian analysis used in the experimental design can also be useful in detecting conflicting information between measurements and model predictions.

Citations (56)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube