Identifying codes in line graphs (1107.0207v2)
Abstract: An identifying code of a graph is a subset of its vertices such that every vertex of the graph is uniquely identified by the set of its neighbours within the code. We study the edge-identifying code problem, i.e. the identifying code problem in line graphs. If $\ID(G)$ denotes the size of a minimum identifying code of an identifiable graph $G$, we show that the usual bound $\ID(G)\ge \lceil\log_2(n+1)\rceil$, where $n$ denotes the order of $G$, can be improved to $\Theta(\sqrt{n})$ in the class of line graphs. Moreover, this bound is tight. We also prove that the upper bound $\ID(\mathcal{L}(G))\leq 2|V(G)|-5$, where $\mathcal{L}(G)$ is the line graph of $G$, holds (with two exceptions). This implies that a conjecture of R. Klasing, A. Kosowski, A. Raspaud and the first author holds for a subclass of line graphs. Finally, we show that the edge-identifying code problem is NP-complete, even for the class of planar bipartite graphs of maximum degree~3 and arbitrarily large girth.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.