Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sparse Inverse Covariance Estimation via an Adaptive Gradient-Based Method (1106.5175v1)

Published 25 Jun 2011 in stat.ML

Abstract: We study the problem of estimating from data, a sparse approximation to the inverse covariance matrix. Estimating a sparsity constrained inverse covariance matrix is a key component in Gaussian graphical model learning, but one that is numerically very challenging. We address this challenge by developing a new adaptive gradient-based method that carefully combines gradient information with an adaptive step-scaling strategy, which results in a scalable, highly competitive method. Our algorithm, like its predecessors, maximizes an $\ell_1$-norm penalized log-likelihood and has the same per iteration arithmetic complexity as the best methods in its class. Our experiments reveal that our approach outperforms state-of-the-art competitors, often significantly so, for large problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)