Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Interesting Multi-Relational Patterns (1106.4475v2)

Published 22 Jun 2011 in cs.DB, cs.DS, and cs.SI

Abstract: Mining patterns from multi-relational data is a problem attracting increasing interest within the data mining community. Traditional data mining approaches are typically developed for highly simplified types of data, such as an attribute-value table or a binary database, such that those methods are not directly applicable to multi-relational data. Nevertheless, multi-relational data is a more truthful and therefore often also a more powerful representation of reality. Mining patterns of a suitably expressive syntax directly from this representation, is thus a research problem of great importance. In this paper we introduce a novel approach to mining patterns in multi-relational data. We propose a new syntax for multi-relational patterns as complete connected subgraphs in a representation of the database as a K-partite graph. We show how this pattern syntax is generally applicable to multirelational data, while it reduces to well-known tiles [7] when the data is a simple binary or attribute-value table. We propose RMiner, an efficient algorithm to mine such patterns, and we introduce a method for quantifying their interestingness when contrasted with prior information of the data miner. Finally, we illustrate the usefulness of our approach by discussing results on real-world and synthetic databases.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.