Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Optimal Rate Scheduling via Utility-Maximization for J-User MIMO Markov Fading Wireless Channels with Cooperation (1106.4386v1)

Published 22 Jun 2011 in math.PR, cs.IT, math.IT, math.OC, math.ST, and stat.TH

Abstract: We design a dynamic rate scheduling policy of Markov type via the solution (a social optimal Nash equilibrium point) to a utility-maximization problem over a randomly evolving capacity set for a class of generalized processor-sharing queues living in a random environment, whose job arrivals to each queue follow a doubly stochastic renewal process (DSRP). Both the random environment and the random arrival rate of each DSRP are driven by a finite state continuous time Markov chain (FS-CTMC). Whereas the scheduling policy optimizes in a greedy fashion with respect to each queue and environmental state and since the closed-form solution for the performance of such a queueing system under the policy is difficult to obtain, we establish a reflecting diffusion with regime-switching (RDRS) model for its measures of performance and justify its asymptotic optimality through deriving the stochastic fluid and diffusion limits for the corresponding system under heavy traffic and identifying a cost function related to the utility function, which is minimized through minimizing the workload process in the diffusion limit. More importantly, our queueing model includes both J-user multi-input multi-output (MIMO) multiple access channel (MAC) and broadcast channel (BC) with cooperation and admission control as special cases. In these wireless systems, data from the J users in the MAC or data to the J users in the BC is transmitted over a common channel that is fading according to the FS-CTMC. The J-user capacity region for the MAC or the BC is a set-valued stochastic process that switches with the FS-CTMC fading. In any particular channel state, we show that each of the J-user capacity regions is a convex set bounded by a number of linear or smooth curved facets. Therefore our queueing model can perfectly match the dynamics of these wireless systems.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube