Extensional Higher-Order Logic Programming (1106.3457v1)
Abstract: We propose a purely extensional semantics for higher-order logic programming. In this semantics program predicates denote sets of ordered tuples, and two predicates are equal iff they are equal as sets. Moreover, every program has a unique minimum Herbrand model which is the greatest lower bound of all Herbrand models of the program and the least fixed-point of an immediate consequence operator. We also propose an SLD-resolution proof procedure which is proven sound and complete with respect to the minimum model semantics. In other words, we provide a purely extensional theoretical framework for higher-order logic programming which generalizes the familiar theory of classical (first-order) logic programming.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.