Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction from anisotropic random measurements (1106.1151v1)

Published 6 Jun 2011 in math.ST, cs.IT, math.FA, math.IT, and stat.TH

Abstract: Random matrices are widely used in sparse recovery problems, and the relevant properties of matrices with i.i.d. entries are well understood. The current paper discusses the recently introduced Restricted Eigenvalue (RE) condition, which is among the most general assumptions on the matrix, guaranteeing recovery. We prove a reduction principle showing that the RE condition can be guaranteed by checking the restricted isometry on a certain family of low-dimensional subspaces. This principle allows us to establish the RE condition for several broad classes of random matrices with dependent entries, including random matrices with subgaussian rows and non-trivial covariance structure, as well as matrices with independent rows, and uniformly bounded entries.

Summary

We haven't generated a summary for this paper yet.