Beta processes, stick-breaking, and power laws (1106.0539v2)
Abstract: The beta-Bernoulli process provides a Bayesian nonparametric prior for models involving collections of binary-valued features. A draw from the beta process yields an infinite collection of probabilities in the unit interval, and a draw from the Bernoulli process turns these into binary-valued features. Recent work has provided stick-breaking representations for the beta process analogous to the well-known stick-breaking representation for the Dirichlet process. We derive one such stick-breaking representation directly from the characterization of the beta process as a completely random measure. This approach motivates a three-parameter generalization of the beta process, and we study the power laws that can be obtained from this generalized beta process. We present a posterior inference algorithm for the beta-Bernoulli process that exploits the stick-breaking representation, and we present experimental results for a discrete factor-analysis model.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.