Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Orthogonal Matching Pursuit: A Brownian Motion Analysis (1105.5853v1)

Published 30 May 2011 in cs.IT and math.IT

Abstract: A well-known analysis of Tropp and Gilbert shows that orthogonal matching pursuit (OMP) can recover a k-sparse n-dimensional real vector from 4 k log(n) noise-free linear measurements obtained through a random Gaussian measurement matrix with a probability that approaches one as n approaches infinity. This work strengthens this result by showing that a lower number of measurements, 2 k log(n - k), is in fact sufficient for asymptotic recovery. More generally, when the sparsity level satisfies kmin <= k <= kmax but is unknown, 2 kmax log(n - kmin) measurements is sufficient. Furthermore, this number of measurements is also sufficient for detection of the sparsity pattern (support) of the vector with measurement errors provided the signal-to-noise ratio (SNR) scales to infinity. The scaling 2 k log(n - k) exactly matches the number of measurements required by the more complex lasso method for signal recovery with a similar SNR scaling.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.