Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orthogonal Matching Pursuit: A Brownian Motion Analysis (1105.5853v1)

Published 30 May 2011 in cs.IT and math.IT

Abstract: A well-known analysis of Tropp and Gilbert shows that orthogonal matching pursuit (OMP) can recover a k-sparse n-dimensional real vector from 4 k log(n) noise-free linear measurements obtained through a random Gaussian measurement matrix with a probability that approaches one as n approaches infinity. This work strengthens this result by showing that a lower number of measurements, 2 k log(n - k), is in fact sufficient for asymptotic recovery. More generally, when the sparsity level satisfies kmin <= k <= kmax but is unknown, 2 kmax log(n - kmin) measurements is sufficient. Furthermore, this number of measurements is also sufficient for detection of the sparsity pattern (support) of the vector with measurement errors provided the signal-to-noise ratio (SNR) scales to infinity. The scaling 2 k log(n - k) exactly matches the number of measurements required by the more complex lasso method for signal recovery with a similar SNR scaling.

Citations (35)

Summary

We haven't generated a summary for this paper yet.