Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multidimensional Scaling in the Poincare Disk (1105.5332v3)

Published 26 May 2011 in stat.ML and cs.SI

Abstract: Multidimensional scaling (MDS) is a class of projective algorithms traditionally used in Euclidean space to produce two- or three-dimensional visualizations of datasets of multidimensional points or point distances. More recently however, several authors have pointed out that for certain datasets, hyperbolic target space may provide a better fit than Euclidean space. In this paper we develop PD-MDS, a metric MDS algorithm designed specifically for the Poincare disk (PD) model of the hyperbolic plane. Emphasizing the importance of proceeding from first principles in spite of the availability of various black box optimizers, our construction is based on an elementary hyperbolic line search and reveals numerous particulars that need to be carefully addressed when implementing this as well as more sophisticated iterative optimization methods in a hyperbolic space model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Andrej Cvetkovski (1 paper)
  2. Mark Crovella (10 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.