Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Diversification of Web Search Results (1105.4255v1)

Published 21 May 2011 in cs.IR

Abstract: In this paper we analyze the efficiency of various search results diversification methods. While efficacy of diversification approaches has been deeply investigated in the past, response time and scalability issues have been rarely addressed. A unified framework for studying performance and feasibility of result diversification solutions is thus proposed. First we define a new methodology for detecting when, and how, query results need to be diversified. To this purpose, we rely on the concept of "query refinement" to estimate the probability of a query to be ambiguous. Then, relying on this novel ambiguity detection method, we deploy and compare on a standard test set, three different diversification methods: IASelect, xQuAD, and OptSelect. While the first two are recent state-of-the-art proposals, the latter is an original algorithm introduced in this paper. We evaluate both the efficiency and the effectiveness of our approach against its competitors by using the standard TREC Web diversification track testbed. Results shown that OptSelect is able to run two orders of magnitude faster than the two other state-of-the-art approaches and to obtain comparable figures in diversification effectiveness.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.