Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Column-Oriented Storage Techniques for MapReduce (1105.4252v1)

Published 21 May 2011 in cs.DB and cs.DC

Abstract: Users of MapReduce often run into performance problems when they scale up their workloads. Many of the problems they encounter can be overcome by applying techniques learned from over three decades of research on parallel DBMSs. However, translating these techniques to a MapReduce implementation such as Hadoop presents unique challenges that can lead to new design choices. This paper describes how column-oriented storage techniques can be incorporated in Hadoop in a way that preserves its popular programming APIs. We show that simply using binary storage formats in Hadoop can provide a 3x performance boost over the naive use of text files. We then introduce a column-oriented storage format that is compatible with the replication and scheduling constraints of Hadoop and show that it can speed up MapReduce jobs on real workloads by an order of magnitude. We also show that dealing with complex column types such as arrays, maps, and nested records, which are common in MapReduce jobs, can incur significant CPU overhead. Finally, we introduce a novel skip list column format and lazy record construction strategy that avoids deserializing unwanted records to provide an additional 1.5x performance boost. Experiments on a real intranet crawl are used to show that our column-oriented storage techniques can improve the performance of the map phase in Hadoop by as much as two orders of magnitude.

Citations (142)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.