Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Improving Performance of Speaker Identification System Using Complementary Information Fusion (1105.2770v2)

Published 13 May 2011 in cs.SD and cs.MM

Abstract: Feature extraction plays an important role as a front-end processing block in speaker identification (SI) process. Most of the SI systems utilize like Mel-Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), Linear Predictive Cepstral Coefficients (LPCC), as a feature for representing speech signal. Their derivations are based on short term processing of speech signal and they try to capture the vocal tract information ignoring the contribution from the vocal cord. Vocal cord cues are equally important in SI context, as the information like pitch frequency, phase in the residual signal, etc could convey important speaker specific attributes and are complementary to the information contained in spectral feature sets. In this paper we propose a novel feature set extracted from the residual signal of LP modeling. Higher-order statistical moments are used here to find the nonlinear relationship in residual signal. To get the advantages of complementarity vocal cord based decision score is fused with the vocal tract based score. The experimental results on two public databases show that fused mode system outperforms single spectral features.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.