Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Closed-form EM for Sparse Coding and its Application to Source Separation (1105.2493v6)

Published 12 May 2011 in stat.ML

Abstract: We define and discuss the first sparse coding algorithm based on closed-form EM updates and continuous latent variables. The underlying generative model consists of a standard `spike-and-slab' prior and a Gaussian noise model. Closed-form solutions for E- and M-step equations are derived by generalizing probabilistic PCA. The resulting EM algorithm can take all modes of a potentially multi-modal posterior into account. The computational cost of the algorithm scales exponentially with the number of hidden dimensions. However, with current computational resources, it is still possible to efficiently learn model parameters for medium-scale problems. Thus the model can be applied to the typical range of source separation tasks. In numerical experiments on artificial data we verify likelihood maximization and show that the derived algorithm recovers the sparse directions of standard sparse coding distributions. On source separation benchmarks comprised of realistic data we show that the algorithm is competitive with other recent methods.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube