Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning content similarity for music recommendation (1105.2344v1)

Published 12 May 2011 in cs.MM

Abstract: Many tasks in music information retrieval, such as recommendation, and playlist generation for online radio, fall naturally into the query-by-example setting, wherein a user queries the system by providing a song, and the system responds with a list of relevant or similar song recommendations. Such applications ultimately depend on the notion of similarity between items to produce high-quality results. Current state-of-the-art systems employ collaborative filter methods to represent musical items, effectively comparing items in terms of their constituent users. While collaborative filter techniques perform well when historical data is available for each item, their reliance on historical data impedes performance on novel or unpopular items. To combat this problem, practitioners rely on content-based similarity, which naturally extends to novel items, but is typically out-performed by collaborative filter methods. In this article, we propose a method for optimizing contentbased similarity by learning from a sample of collaborative filter data. The optimized content-based similarity metric can then be applied to answer queries on novel and unpopular items, while still maintaining high recommendation accuracy. The proposed system yields accurate and efficient representations of audio content, and experimental results show significant improvements in accuracy over competing content-based recommendation techniques.

Citations (156)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.