Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Pushing the limits for medical image reconstruction on recent standard multicore processors (1104.5243v2)

Published 27 Apr 2011 in cs.PF and cs.DC

Abstract: Volume reconstruction by backprojection is the computational bottleneck in many interventional clinical computed tomography (CT) applications. Today vendors in this field replace special purpose hardware accelerators by standard hardware like multicore chips and GPGPUs. Medical imaging algorithms are on the verge of employing High Performance Computing (HPC) technology, and are therefore an interesting new candidate for optimization. This paper presents low-level optimizations for the backprojection algorithm, guided by a thorough performance analysis on four generations of Intel multicore processors (Harpertown, Westmere, Westmere EX, and Sandy Bridge). We choose the RabbitCT benchmark, a standardized testcase well supported in industry, to ensure transparent and comparable results. Our aim is to provide not only the fastest possible implementation but also compare to performance models and hardware counter data in order to fully understand the results. We separate the influence of algorithmic optimizations, parallelization, SIMD vectorization, and microarchitectural issues and pinpoint problems with current SIMD instruction set extensions on standard CPUs (SSE, AVX). The use of assembly language is mandatory for best performance. Finally we compare our results to the best GPGPU implementations available for this open competition benchmark.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.