Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nearly Optimal Bounds for Distributed Wireless Scheduling in the SINR Model (1104.5200v2)

Published 27 Apr 2011 in cs.DS and cs.NI

Abstract: We study the wireless scheduling problem in the SINR model. More specifically, given a set of $n$ links, each a sender-receiver pair, we wish to partition (or \emph{schedule}) the links into the minimum number of slots, each satisfying interference constraints allowing simultaneous transmission. In the basic problem, all senders transmit with the same uniform power. We give a distributed $O(\log n)$-approximation algorithm for the scheduling problem, matching the best ratio known for centralized algorithms. It holds in arbitrary metric space and for every length-monotone and sublinear power assignment. It is based on an algorithm of Kesselheim and V\"ocking, whose analysis we improve by a logarithmic factor. We show that every distributed algorithm uses $\Omega(\log n)$ slots to schedule certain instances that require only two slots, which implies that the best possible absolute performance guarantee is logarithmic.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.