Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Dense Clusters via "Low Rank + Sparse" Decomposition (1104.5186v1)

Published 27 Apr 2011 in stat.ML, cs.IT, and math.IT

Abstract: Finding "densely connected clusters" in a graph is in general an important and well studied problem in the literature \cite{Schaeffer}. It has various applications in pattern recognition, social networking and data mining \cite{Duda,Mishra}. Recently, Ames and Vavasis have suggested a novel method for finding cliques in a graph by using convex optimization over the adjacency matrix of the graph \cite{Ames, Ames2}. Also, there has been recent advances in decomposing a given matrix into its "low rank" and "sparse" components \cite{Candes, Chandra}. In this paper, inspired by these results, we view "densely connected clusters" as imperfect cliques, where imperfections correspond missing edges, which are relatively sparse. We analyze the problem in a probabilistic setting and aim to detect disjointly planted clusters. Our main result basically suggests that, one can find \emph{dense} clusters in a graph, as long as the clusters are sufficiently large. We conclude by discussing possible extensions and future research directions.

Citations (57)

Summary

We haven't generated a summary for this paper yet.