Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Online Learning: Stochastic and Constrained Adversaries (1104.5070v1)

Published 27 Apr 2011 in stat.ML, cs.GT, and cs.LG

Abstract: Learning theory has largely focused on two main learning scenarios. The first is the classical statistical setting where instances are drawn i.i.d. from a fixed distribution and the second scenario is the online learning, completely adversarial scenario where adversary at every time step picks the worst instance to provide the learner with. It can be argued that in the real world neither of these assumptions are reasonable. It is therefore important to study problems with a range of assumptions on data. Unfortunately, theoretical results in this area are scarce, possibly due to absence of general tools for analysis. Focusing on the regret formulation, we define the minimax value of a game where the adversary is restricted in his moves. The framework captures stochastic and non-stochastic assumptions on data. Building on the sequential symmetrization approach, we define a notion of distribution-dependent Rademacher complexity for the spectrum of problems ranging from i.i.d. to worst-case. The bounds let us immediately deduce variation-type bounds. We then consider the i.i.d. adversary and show equivalence of online and batch learnability. In the supervised setting, we consider various hybrid assumptions on the way that x and y variables are chosen. Finally, we consider smoothed learning problems and show that half-spaces are online learnable in the smoothed model. In fact, exponentially small noise added to adversary's decisions turns this problem with infinite Littlestone's dimension into a learnable problem.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.