Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Quadratic Integer Programming with PSD Objectives (1104.4746v3)

Published 25 Apr 2011 in cs.CC and cs.DS

Abstract: We present an approximation scheme for optimizing certain Quadratic Integer Programming problems with positive semidefinite objective functions and global linear constraints. This framework includes well known graph problems such as Minimum graph bisection, Edge expansion, Uniform sparsest cut, and Small Set expansion, as well as the Unique Games problem. These problems are notorious for the existence of huge gaps between the known algorithmic results and NP-hardness results. Our algorithm is based on rounding semidefinite programs from the Lasserre hierarchy, and the analysis uses bounds for low-rank approximations of a matrix in Frobenius norm using columns of the matrix. For all the above graph problems, we give an algorithm running in time $n{O(r/\epsilon2)}$ with approximation ratio $\frac{1+\epsilon}{\min{1,\lambda_r}}$, where $\lambda_r$ is the $r$'th smallest eigenvalue of the normalized graph Laplacian $\mathcal{L}$. In the case of graph bisection and small set expansion, the number of vertices in the cut is within lower-order terms of the stipulated bound. Our results imply $(1+O(\epsilon))$ factor approximation in time $n{O(r\ast/\epsilon2)}$ where $r\ast$ is the number of eigenvalues of $\mathcal{L}$ smaller than $1-\epsilon$. For Unique Games, we give a factor $(1+\frac{2+\epsilon}{\lambda_r})$ approximation for minimizing the number of unsatisfied constraints in $n{O(r/\epsilon)}$ time. This improves an earlier bound for solving Unique Games on expanders, and also shows that Lasserre SDPs are powerful enough to solve well-known integrality gap instances for the basic SDP. We also give an algorithm for independent sets in graphs that performs well when the Laplacian does not have too many eigenvalues bigger than $1+o(1)$.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.