Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributed Self-Organization Of Swarms To Find Globally $ε$-Optimal Routes To Locally Sensed Targets (1104.4251v1)

Published 21 Apr 2011 in cs.RO, cs.MA, cs.SY, and math.OC

Abstract: The problem of near-optimal distributed path planning to locally sensed targets is investigated in the context of large swarms. The proposed algorithm uses only information that can be locally queried, and rigorous theoretical results on convergence, robustness, scalability are established, and effect of system parameters such as the agent-level communication radius and agent velocities on global performance is analyzed. The fundamental philosophy of the proposed approach is to percolate local information across the swarm, enabling agents to indirectly access the global context. A gradient emerges, reflecting the performance of agents, computed in a distributed manner via local information exchange between neighboring agents. It is shown that to follow near-optimal routes to a target which can be only sensed locally, and whose location is not known a priori, the agents need to simply move towards its "best" neighbor, where the notion of "best" is obtained by computing the state-specific language measure of an underlying probabilistic finite state automata. The theoretical results are validated in high-fidelity simulation experiments, with excess of $104$ agents.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.