Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Variants of the Matroid Secretary Problem (1104.4081v2)

Published 20 Apr 2011 in cs.DS and cs.GT

Abstract: We present a number of positive and negative results for variants of the matroid secretary problem. Most notably, we design a constant-factor competitive algorithm for the "random assignment" model where the weights are assigned randomly to the elements of a matroid, and then the elements arrive on-line in an adversarial order (extending a result of Soto \cite{Soto11}). This is under the assumption that the matroid is known in advance. If the matroid is unknown in advance, we present an $O(\log r \log n)$-approximation, and prove that a better than $O(\log n / \log \log n)$ approximation is impossible. This resolves an open question posed by Babaioff et al. \cite{BIK07}. As a natural special case, we also consider the classical secretary problem where the number of candidates $n$ is unknown in advance. If $n$ is chosen by an adversary from ${1,...,N}$, we provide a nearly tight answer, by providing an algorithm that chooses the best candidate with probability at least $1/(H_{N-1}+1)$ and prove that a probability better than $1/H_N$ cannot be achieved (where $H_N$ is the $N$-th harmonic number).

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.