Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fixed Block Compression Boosting in FM-Indexes (1104.3810v1)

Published 19 Apr 2011 in cs.DS and cs.IR

Abstract: A compressed full-text self-index occupies space close to that of the compressed text and simultaneously allows fast pattern matching and random access to the underlying text. Among the best compressed self-indexes, in theory and in practice, are several members of the FM-index family. In this paper, we describe new FM-index variants that combine nice theoretical properties, simple implementation and improved practical performance. Our main result is a new technique called fixed block compression boosting, which is a simpler and faster alternative to optimal compression boosting and implicit compression boosting used in previous FM-indexes.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.