Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contracting Graphs to Paths and Trees (1104.3677v1)

Published 19 Apr 2011 in cs.DS

Abstract: Vertex deletion and edge deletion problems play a central role in Parameterized Complexity. Examples include classical problems like Feedback Vertex Set, Odd Cycle Transversal, and Chordal Deletion. Interestingly, the study of edge contraction problems of this type from a parameterized perspective has so far been left largely unexplored. We consider two basic edge contraction problems, which we call Path-Contractibility and Tree-Contractibility. Both problems take an undirected graph $G$ and an integer $k$ as input, and the task is to determine whether we can obtain a path or an acyclic graph, respectively, by contracting at most $k$ edges of $G$. Our main contribution is an algorithm with running time $4{k+O(\log2 k)} + n{O(1)}$ for Path-Contractibility and an algorithm with running time $4.88k n{O(1)}$ for Tree-Contractibility, based on a novel application of the color coding technique of Alon, Yuster and Zwick. Furthermore, we show that Path-Contractibility has a kernel with at most $5k+3$ vertices, while Tree-Contractibility does not have a polynomial kernel unless coNP $\subseteq$ NP/poly. We find the latter result surprising, because of the strong connection between Tree-Contractibility and Feedback Vertex Set, which is known to have a vertex kernel with size $O(k2)$.

Citations (49)

Summary

We haven't generated a summary for this paper yet.