Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneity and Allometric Growth of Human Collaborative Tagging Behavior (1104.3179v1)

Published 15 Apr 2011 in cs.IR, cs.SI, and physics.soc-ph

Abstract: Allometric growth is found in many tagging systems online. That is, the number of new tags (T) is a power law function of the active population (P), or T Pgamma (gamma!=1). According to previous studies, it is the heterogeneity in individual tagging behavior that gives rise to allometric growth. These studies consider the power-law distribution model with an exponent beta, regarding 1/beta as an index for heterogeneity. However, they did not discuss whether power-law is the only distribution that leads to allometric growth, or equivalently, whether the positive correlation between heterogeneity and allometric growth holds in systems of distributions other than power-law. In this paper, the authors systematically examine the growth pattern of systems of six different distributions, and find that both power-law distribution and log-normal distribution lead to allometric growth. Furthermore, by introducing Shannon entropy as an indicator for heterogeneity instead of 1/beta, the authors confirm that the positive relationship between heterogeneity and allometric growth exists in both cases of power-law and log-normal distributions.

Summary

We haven't generated a summary for this paper yet.