Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Subexponential convergence for information aggregation on regular trees (1104.2939v1)

Published 14 Apr 2011 in cs.MA, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We consider the decentralized binary hypothesis testing problem on trees of bounded degree and increasing depth. For a regular tree of depth t and branching factor k>=2, we assume that the leaves have access to independent and identically distributed noisy observations of the 'state of the world' s. Starting with the leaves, each node makes a decision in a finite alphabet M, that it sends to its parent in the tree. Finally, the root decides between the two possible states of the world based on the information it receives. We prove that the error probability vanishes only subexponentially in the number of available observations, under quite general hypotheses. More precisely the case of binary messages, decay is subexponential for any decision rule. For general (finite) message alphabet M, decay is subexponential for 'node-oblivious' decision rules, that satisfy a mild irreducibility condition. In the latter case, we propose a family of decision rules with close-to-optimal asymptotic behavior.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.