Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The vertex leafage of chordal graphs (1104.2524v2)

Published 13 Apr 2011 in cs.DM and cs.CC

Abstract: Every chordal graph $G$ can be represented as the intersection graph of a collection of subtrees of a host tree, a so-called {\em tree model} of $G$. The leafage $\ell(G)$ of a connected chordal graph $G$ is the minimum number of leaves of the host tree of a tree model of $G$. The vertex leafage $\vl(G)$ is the smallest number $k$ such that there exists a tree model of $G$ in which every subtree has at most $k$ leaves. The leafage is a polynomially computable parameter by the result of \cite{esa}. In this contribution, we study the vertex leafage. We prove for every fixed $k\geq 3$ that deciding whether the vertex leafage of a given chordal graph is at most $k$ is NP-complete by proving a stronger result, namely that the problem is NP-complete on split graphs with vertex leafage of at most $k+1$. On the other hand, for chordal graphs of leafage at most $\ell$, we show that the vertex leafage can be calculated in time $n{O(\ell)}$. Finally, we prove that there exists a tree model that realizes both the leafage and the vertex leafage of $G$. Notably, for every path graph $G$, there exists a path model with $\ell(G)$ leaves in the host tree and it can be computed in $O(n3)$ time.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.