Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

PAC learnability versus VC dimension: a footnote to a basic result of statistical learning (1104.2097v1)

Published 12 Apr 2011 in cs.LG

Abstract: A fundamental result of statistical learnig theory states that a concept class is PAC learnable if and only if it is a uniform Glivenko-Cantelli class if and only if the VC dimension of the class is finite. However, the theorem is only valid under special assumptions of measurability of the class, in which case the PAC learnability even becomes consistent. Otherwise, there is a classical example, constructed under the Continuum Hypothesis by Dudley and Durst and further adapted by Blumer, Ehrenfeucht, Haussler, and Warmuth, of a concept class of VC dimension one which is neither uniform Glivenko-Cantelli nor consistently PAC learnable. We show that, rather surprisingly, under an additional set-theoretic hypothesis which is much milder than the Continuum Hypothesis (Martin's Axiom), PAC learnability is equivalent to finite VC dimension for every concept class.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)